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J. Phys. A: Math. Gen. 13 (1980) 2903-2911. Printed in Great Britain 

Dimensional analysis of subtracted-out Feynman integrands 

E B Manoukian 
Department of National Defence and Department of Mathematics, Royal Military College 
of Canada, Kingston, Ontario K7L 2W3, Canada 

Received 24 October 1979 

Abstract. A rigorous dimensional analysis of Bogoliubov subtracted-out type Feynman 
integrands is carried out, giving sufficient conditions for determining the asymptotic 
behaviour of the corresponding integrals in the ultraviolet region in Euclidean space. 

1. Introduction 

The purpose of this work is to carry out a dimensional analysis of Bogoliubov type 
subtractions (Bogoliubov and Parasiuk 1957, Parasiuk 1960, Hepp 1966) of Feynman 
integrands (Zimmermann 1969) R. We give sufficient conditions for determining the 
asymptotic polynomial and logarithmic behaviour of renormalised amplitudes A = R 
in the ultraviolet region in Euclidean space by the application of the power-counting 
theorem in the Weinberg-Fink sense (Weinberg 1960, Fink 1968) and by determining 
the class of the so-called maximising subspaces (Manoukian 1978) for the bound of A 
relative to certain parameters in the theory becoming large. The key result is that we 
obtain precise conditions under which an integrand R, with its complicated structure of 
subtractions, may take on its maximum dimensionality (§ 2), in conformity with the 
power-counting theorem, when all or some of the external momenta of a graph become 
large and, in general, at different rates in Euclidean space. 

2. Dimensional analysis 

Let 4n and 4n' denote the number of integration variables and the number of the 
independent external momentum components, respectively, associated with the 
renormalised integrand R corresponding to a proper and connected graph G. We 
combine the 4(n +n')  variables as the components of a 4(n + n')-vector in a Euclidean 
space R4("+"') in the standard manner (Weinberg 1960). Let P E  R4("+"') be a vector 
such that each of the integration and external variables may be written as a linear 
combination of the components of P. 

A line 1 in G, carrying a momentum QI, will be represented in the form of a 
polynomial in Ql times [a: + y :  -ie(Q: +@:)Ip1. As we are working in Euclidean 
space we drop the ie factor throughout. We assume as a sufficiency condition that 
p: > 0 for each line 1 in G, where p I  denotes the mass carried in the line 1. The 
momentum QI may be written as QI = ki + 41, where 41 is a function of the external 
momenta of G only, and kl is a function of the integration variables relative to G only. 
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For each line 1 in G and for each component Q, of the corresponding 4-vector, we 
introduce a vector VI in R4(nTn’) such that V I .  P = Q,. Similarly, we introduce V vectors 
corresponding to qr and kl. To simplify the notation we denote by Vi” and Vi2) the V 
corresponding to k, and q, respectively, relative to the graph. In other words, and quite 
generally, in reference to a given subdiagram g c G, we will refer to the Vi” and V?) 
associated with its line as the V associated with the internal and external variables of g 
respectively. Let I be an arbitrarily chosen and fixed 4n-dimensional subspace of 

, disjoint 
from I such that R4(nin’) = I + E, with A ( I )  the projection operation along I on E. (For 
more details on definitions and notation see Weinberg 1960.) 

Let S,  be a subspace of E spanned by an arbitrarily chosen set of independent 
vectors L1, L2,  . . . , L,:  S ,  = {L1, . . . , L,}. We may then write the dependence of the 
amplitude A(p: ,  . . . , pl, . , . , p i  on its momentum components, as the components of 
a vector in E, in the general form 

4 ( n + n  ) associated with the integration variables, and E a subspace of R R4(n+n’)  

3 

A(L171q2...qm+L2772. . . q m + . .  . + L , q , . .  . T / , + . . . + L ~ ~ ~ + C )  (1) 

where S,  = {L1,  , , . , L,}, 0 < r s m, 0 < m < 4n’, and C is a vector confined to a finite 
region in E. The parameters ql, q2, , . . , qm are real and positive and will be eventually 
taken to be large. Let U denote the collection of all subspaces of R such that for 
any subspace S E U, A ( l ) S  -. S,, where S, is as defined above. 

Similarly, we may write for the renormalised subtracted out integrand for its 
dependence on the external and internal (i.e., integration) variables the expression 

4(n+n’) 

R(L1q1 . .  . qs+. . .+L,q, .  . . qm+.  . . + L , q , + C )  

= R ( ( L I ~ I  * * q r - 1 7 , + 1 *  * ~ s + .  * * + L r ~ r + l  * .  q s ) q r + .  *+Lsvs+C) 

where now { L I ,  . . . , L,} = S,  c R4(n+n’) , O < r ~ s ( s s 4 ( n  +n’ ) )  with C confined to a 
finite region in R . We shall say that the parameter q, is associated with the 
subspace S,. 

In reference to any given subspace S’ E U (that is, for a given subspace S’ such that 
A(I )S’  = S, with S,  as defined through equation (I)), the renormalised integrand R may 
be written, in conformity with the power counting theorem, in our notation as 
(Zimmermann 1969) 

4 ( n + n ’ )  

R = (1 - TG) 1 Y G ( ~ ) ,  (2) 
C 

with YG(C) defined recursively through 
n 

Y G ~ C ) = I G , / G ; ~  UG:, n (SG: -TG: )YG: (C) ,  (3) 
I = ’  

where the sum in equation (2) is over all sets C such that for any g E C all the V ( l )  in 
g / g l  U. . . U g, are either all orthogonal or all not orthogonal to S’.  The subdiagrams 
g l ,  , , . , g, are proper, connected and with degree of divergences d ( g l )  5 0, . . . , d(g,)  3 
0 ,  and denote the maximal elements in C contained in g :  g, c g, i = 1, . . . , c. In 
equation (3), G’( E G) is a proper and connected diagram in C with G ; ,  . . . , GA as the 
maximal elements in C contained in the diagram G’: G: c G’, i = 1, . . . , n. TG: 
denotes the Taylor operation on the expression Y G :  ( C )  with respect to the external 
variables of the subdiagram G: (that is the variables q?; ) up to the order d(G: ) .  The 
objects SG, are defined as follows. If all the V ( l )  in G’/G; u . .  .uGk are not 
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orthogonal to S’ and all the V‘” in G ” / G ‘ u  G ;  U. . . U G:, in the preceding recursive 
formula for YG,, with G” =) G’, are, where G” is in C with G’,  G ; ,  . . . , G: as its maximal 
elements contained in G”, then SG,  = 1, and zero otherwise. I G , G ~  denotes the 
unrenormaiised Feynman integrand of the diagram G with G’ shrunk to a point. 
Throughout the paper we take the degree of divergence of a diagram to coincide with its 
dimensionality, and hence Tg # 0 only if d ( g )  2 0. 

Consider the following recursive formulae with G ‘ E  G and with the notation 
YG’(C) 55 YG’: 

n’ 

Y G , = I G * / G ; ~ . . . ~ G , :  n ( S G ;  - T G :  1 YG: ,  
i = l  

n, 

j = l  
YG: = I G ; / G ; ~ ~ . . , ~ G ; , , ~  n ( S G : ,  - TG:, )  YG:,,  (4) 

with the S defined in reference to a subspace S’ E U. 
Let c,, be the class of those subdiagrams { 6 : , k }  in equation (4) having 6G:,k = 1, and 

let the class of the remaining subdiagrams in {G:,k} with SG:,* = 0 be denoted by c:,. 
Similarly, we define the classes c1 and c :  associated with the diagrams in the set {G:j} ,  
and classes c and c ’  associated with the diagrams in the set {Gi} .  

Lemma 1. Suppose that the Class c,, is not empty (cl ,  # ia), that is for some Gllk, SG,jk = 1 
by definition; then 

de& ( 6 ~ :  - TG: YG: < d ( G : ) - M ( G : ) ,  ( 5 )  

for G :  in c or in c’. In equation ( 5 )  all the momenta internal and/or external in those 
lines in G :  with their V not orthogonal to S’ have been scaled by A and the degree is 
with respect to this parameter. M ( G : )  is the number of independent integration 
variables characteristic of G :  and the set C. 

The important and non-trivial point to note here is that the equality irr ( 5 )  is ruled 
out under the precise stated conditions. 

Proof. (i) Case 8G: = 1. Then, by definition, G :  E c and all the V(l) in 6 : / G i 1  U. . .U 

G:n, are not orthogonal to S‘ .  To carry out the proof, we initially scale only the internal 
variables of GiIk with their V not orthogonal to S‘ by A, and scale their external 
variables by a parameter p. For G : , k  E c,,, we then have explicitly an expression of the 
most general form given by 

where 

if d(Giik) 5 0, and according to the power-counting criterion (Zimmermann 1969), 

max deg,,,,F,,,,(p, A ) C d ( G ! .  ti k )-M(Gijk)-Xijk. (8) 
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The non-negative integer X y k  in (6) is bounded above. Similarly for a Gijk E cii we have 

where according to the power-counting criterion (Zimmermann 1969), 

degA fiyiik (A 1 < - M(Gijk) 

deg, fiyij, (A ) = 0 

(10) 

for kf(Gijk) Z 0 and 

(1 1) 

if M(Giik) = 0; and where y i j k  S d(G:ik). Note that because the class cii is assumed not 
to be empty, it follows that all the V(l) in Gij/GIjl u.. .U Gijflii are necessarily 
orthogonal to S' according to the subtraction scheme. 

In reference to the ( -  T G ; ~ )  operation, the external variables,of the Giik's are to be 
expressed as linear combinations of the internal and external variables of Gip Accord- 
ingly, by the ( -  T G i i )  operation on YG:, we readily obtain symbolically an expression of 
the form 

(12) * + y + z + w  
( -  T G : j ) ~ G ~ i = C  (PI Ff) (A  )Fy (A ) I  $$G :, 1 U ... U G ; jn i i ,  

where symbolically x =E Xi+ etc, F'"'(A) = (a /ap)"F (p ,  A)l ,=o,  and where we have 
scaled the external variables in G ~ j / G ~ i l  U. . .U Giiflij by p as well. The summation is 
over non-negative integers Xi jk ,  y i jk ,  . . . such that 

(13) 

Symbolically we also have F?) ( A )  = I1 FE;). It is readily seen that I ~ ; ~ ) ~ ; J l u , , , u ~ ; l n i j  is 
independent of A. We now scale the internal variables in GI/Gil U. . . U Gjfli with their 
V not orthogonal to S' by A and the external variables by p, where GI E c. With 
reference to the (1 - TG; ) operation, we have to express the external variables of the 
G:ikEciiucij as linear combinations of the external and internal variables of GI. 
Accordingly upon the operation of (1 - TG:) on YG;, we obtain, symbolically, an 
expression 

x + y + z  + wij s d(GIj). 

F:) (A ) f l y  ( A )  1 ( p ) x ' + \ > ' c ;  -7" x"+y"+z"+w" 0 

x I-'I ~ ~ $ G : , l o  uG:fn,l (1 - TL; ) I G : / G : ~ ~  uG:,c, (14) 

where TL:  is of dcgree d ( G : ) - x ' - y ' - z ' -  w', x ' + y ' + z ' + w ' + x " + y " + z " + w " =  
x + y + z + w. Now we scale those external variables of G:/G:,  U .  . , U G : ,  with their 
V(') not orthogonal to S' by A as well. We then readily check the correctness of the 
statement in the lemma for G: E c. 

(ii) Case SG: = 0. Proceeding in the same manner as in the above case, upon writing 
the external variables of the G:, as linear combinations of the external and internal 
variables of G :  with G: E c', and carrying out the operation in (-TG:)YG; we obtain 
from (6)-(13) an expression of the form 

( 1 )  

(15) F k ' ( A ) f i y ( A )  nIg;$G;j~u uG:,"Ij I (4)  G:lu uG;,$ 

( 1 )  
c ( P ) X + y + Z + W + q  

where x + y + z + w +q < d(G:) .  Accordingly we have now all those variables, internal 
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and external, in Gi with their V not orthogonal to S' ,  scaled by A : 

maxdeg, ( -  T G ; ) Y G :  <d(G:) -M(Gi) ,  (16) 
which is the statement of the lemma. 

cannot be reached, that is an equality does not hold for this situation. 
The main point to note in the above lemma is that the upper bound value in ( 5 )  

This lemma in turn suggests the consideration of the following lemma: 

with all the S for all the diagrams in C contained in all the Gij at zero. By definition then 
all the V(l) in Gi/Gi, U . . . U Gini are not orthogonal to S and all those in G/G1 U . . . U 

G, are. 

where all the V(l) in Gi are orthogonal to S,  but at least some of the V") of Gi are not 
orthogonal to S (this latter condition on the V'2'may be formallyrelaxed if d(Gi) = 0 by 
dimensional analysis alone). 

Then 

degA (SG,  - TG,) YG, d(Gi) -M(Gi), (20) 

where we have scaled the variables, internal and external, in Gi with their V not 
orthogonal to S by A. 

Proof. Consider the case (i) with G, = 0 for all j = 1,2 ,  . . . , n ; then it is readily seen by 
the explicit application of (1 - TG,) on IG, that 

degA (1 - TG,)IG, d(G,) -M(GJ,  (21) 

where the equality holds if in G,, with d(G,) 5 0, necessarily some of the V(') in G, are 
not orthogonal to S,  by dimensional analysis alone. For d(G,) < 0, the equality in (21) 
holds trivially. 

Consider the case (i) with the G,, # 0, and suppose, only for concreteness and 
without loss of generality, that all the V'" in the G,, are not orthogonal to S. It is easily 
checked as before and by the explicit Taylor operations, as carried out in lemma 1, that 
for d(G,) 5 0, the equality in (20) may hold, from dimensional analysis alone, if at least 
some of the V'') in each Gll(# 0) are not orthogonal to S (this condition on the V"' 
may be formally relaxed, from dimensional analysis alone, for those G,, with d(G,,) = 0) 
and if at least some of the V(2) in G,/Gi lu  . . . U G,,, are not orthogonal to S. For 
d(G,) < 0 the equality in (20) may hold, from dimensional analysis alone, if at least some 
of the V"' in each G,, (# 0) are not orthogonal to S (again this latter condition for the 
V") may be relaxed for those G,, with d(G,,) = 0 from dimensional analysis alone). 
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That the equality in (20) for the case (ii) may hold follows by noting that the (-TG,) 
operation on its preceding expression replaces it by a polynomial of degree 6d(Gi )  in its 
external variables. 

Now we sum over all the sets C in (2) and give, for a given subspace S E U, precise 
conditions under which an equality corresponding to that in (20) (that is, a maximum 
dimensionality) for the subtracted-out integrand R may hold from dimensional analysis 
in conformity with the power counting theorem. 

L.et S be a given subspace in U. Suppose G’ is a subdiagram of G such that I G I G ,  is 
independent of A, the parameter associated with S in the expression for R. Here all the 
momenta, internal and/or external, in those lines in G with their V not orthogonal to S 
have been scaled by A. Let G; ,  . . . , GA be the connected components of G’, Let 
GIl,.  . . , GINi denote the proper and connected parts of GI, i = 1 , 2 , .  . . , n, and 
GIo = uzl G:i. By definition, with G: 3 Glo, G: is constructed out of Gil, . . . , G ; ,  
with the latter connected with one another by singly connecting lines, that is G:/G:o 
involves no closed loops. Let all the V associated with the external variables in G:/G& 
be not orthogonal to S for all i = 1 ,2 ,  . . , n. In general, let GIil, GIi2, . . . be any proper 
and connected (if Z 0) subdiagrams contained in a Gij with Giil n GIj2 # 0, pairwise, 
and d(GIjl)aO, d(GIjz)20, .  . . ,w i th  j E [ 1 , 2 , .  . . ,Ni l  and iE[1 ,2 , .  . . , n ]  such that 
all the V associated with the internal variables of GIi1, Gij2,. . . are orthogonal to S.  

Let 

where the sum in (22) is restricted to those terms with all the associated V with the 
internal variables in G:,/GiJl U G:,2 U . . . not orthogonal to S.  L(g)  denotes the 
number of independent loops in g. 

Finally the subspace S and the subdiagram C’ are chosen such that the following are 
true: 

(a) Let 6’ be any other diagram, constructed similarly to G‘, with corresponding 
subdiagrams Gi,, . . . , G:,k, . . . as defined for G’ with 6’ formally obtained from G’ by 
adding or deleting a set of lines and vertices to G’ with 

in reference to S,  similarly defined as in (22). Then Cr‘ is such that 

d(G’)G d(G‘). 

(b) For any proper and connected diagrams 
k k 

s - 1  *’- 1 
6, I> U GIs,, . . , G,, 2 U Gjs,, 

(if any), where 

{ G L .  . . , G:kI , .  . . , {Gi,, . . . , G;kI, .  . . , 

6,nGB,=0 pairwise, !26) 

(25) 
are any disjoint subsets of the set {G;,  . . . , GL} with 

and I ( u ~ B ~ u ( u ~ ~ l  G;)/u:=~ G,, is independent of A, where uB 6, is the union of the proper 
and connected diagrams in (24) corresponding to the subsets in (25) and G: 



Feynman integrands 2909 

corresponds to the subdiagrams not appearing in the subsets in (25). Then G’ is such 
that 

1 d(GB)+f’  d ( G : ) S  d(G:)=d(G’) ,  
B i = l  i = l  

for any possible subsets as in (25) with any possible proper and connected diagrams as 
in (24), (26). Equation (27) is also true for diagrams 6’, . . . , as given in (a) above with 
the extreme left-hand side of (27) replaced by corresponding expressions for 6 g  
defined in reference to 6‘ and the sum XI d(Gi)  replaced by a corresponding expression 
Xi d(di) with the right-hand side of (27) unchanged. 

The above construction is necessary to take all the terms in the expansion in (2) into 
consideration and to obtain the desired upper bound of R. The condition (23) merely 
guarantees the fact that the degree of R, with respect to A ,  cannot be increased further 
beyond the right-hand side value of equation (28) (see below) by a rearrangement of 
subdiagrams. The condition (27) guarantees the fact that we cannot find Taylor 
operations corresponding to the subdiagrams &, . . . , &, . , . in (24) and (26) which 
may further increase deg, R beyond the upper bound value given in equation (28). The 
latter follows from the following. Let 

be an expression corresponding to a subset in (25) such that 

deg, (1 - TG;,) YGii 6 d(  Gij) -4Lij(S), 

where Lii(S) # 0, is the number of independent loops in Gij/Gijl ii GQz U. . . , for 
example. Then we have explicitly for 6 B  3 us Gi3, with d(&)  2 0, 

Summing over all such dB in (24) leads to the condition stated in equation (27). On the 
other hand (27) and (23) are equivalent if, for example, the diagram (UB 6,) U 

GI) coincides with 6’. Condition (27) also guarantees the fact that we cannot 
find a subspace SE U, as S given above, which may increase further the expression 
degi R +4L(s”), beyond the vzlue d(G’), where h’ is the parameter associated with s” 
and L(s”) is defined similarly to L ( S ) .  

Upon summing over all the sets C in equation (2), in reference to a subspace S E U, 
the above analysis together with the two lemmas establish completely the following 
theorem. This theorem is basic for the investigation of the asymptotic polynomial and 
logarithmic behaviour of renormalised Feynman amplitudes, in conformity with the 
power-counting theorem. 

Theorem. 

deg, R s d ( G ’ ) - 4 L ( S )  (28) 
with L ( S )  as defined in equation (22), and where the equality in equation (28) may hold, 
from dimensional analysis alone, if one of the following is true for each Gij c Gi, with 
G’ = 
2.1. Case I 
All the V(l) in a Gij/Gijl U Gij2 U . . . are not orthogonal to S.  

G:,  in each of the following cases: 

(i) d(Gi j )<O,  Gij17 G;j~ ,  . . . = 0. 
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(ii) d(Gii) a 0, Gijl,Gii2, . . , = 0, and some of the V(2) in Gij are not orthogonal 
to s. 

(iii) d(Gjj) 3 0 or d(Gi j )  < 0, Gijl ,  Gii2, . . . # 0 and at least some of the V"'in each 
Gijl, Gii2, . . , are not orthogonal to S (the latter condition on the V'" may be formally 
relaxed from dimensional analysis alone for those Gijk with d(Gijk) = 0). 
2.2. Case 11 
All the V(') in a Gii are orthogonal to S.  

(iv) d(Gij) 3 0 and some of the V'2' in Gij are not orthogonal to S.  
In the case when the V") in G' are orthogonal to S,  then the above criteria (i)-(iv) 

collapse to the last one (iv) for all Gij with L(S)  = 0. 

3. Conclusion 

We have carried out a rigorous dimensional analysis of Bogoliubov subtracted-out 
Feynman integrands. The criteria under which, as stated in (i)-(iv) in the theorem, there 
is an equality in (28) (that is, yielding a maximum dimensionality for R in conformity 
with the power-counting theorem) give us the sufficient conditions to determine the 
asymptotic polynomial and logarithmic behaviour of A when v l , .  . . , vrr .  , , , vm, as 
appearing in the argument of A in equation ( l ) ,  become independently large. In 
reference to a subspace Si in U, define the degree of the bound of R (that is, the 
so-called asymptotic coefficient) by cy (S') as the power of, say, a parameter A .  Here all 
those internal and/or external variables in G (the graph in question with which the 
subtracted-out amplitude A is associated) with their V not orthogonal to S' have been 
scaled by A.  Let G' c G be the subdiagram consisting of all such lines and the vertices 
joining them. If G' associated with the subspace S' (that is, all its V are not orthogonal 
to S' )  is such that for any S"E U (G" is a subdiagram associated with it, similarly 
defined), d(G") <d(G') ,  then cyr(S,) = d(G')  with dim S'-dim S,  = 4L(S') = 4L(G'). 
Here dim S' denotes the dimension of the space S' .  The parameter @I(&) denotes the 
so-called asymptotic coefficient of the integral of the integrand R, that is, that of the 
subtracted-out amplitude A,  and dim S' denotes the dimension of the space S' .  This 
result follows from the well known relation (Weinberg 1960) 

@ r ( S , ) =  max [cy(S)+dimS-dims,], 
A ( I ) S = S ,  

from the definition of S ' ,  and from the theorem given above with a contribution to R 
(the sum over the sets C in equation (2)) coming in conformity with the power-counting 
theorem, for example, from an expression as in equation (17) in lemma 2 with GI, = 0 
for all j and L(S ' )  = X I  L(Gt) ,  for L(S ' )  # 0, and GI = 0 for L(S') = 0, for all i. The space 
S' is then called a 'maximising subspace' for the bound of A relative to the parameter vr,  
with cyI(Sr) as the power of v,. Thus we see that the polynomial or power behaviour of A 
is straightforwardly obtained. The class of all such subspaces as S ' ,  as just defined, 
however, does not exhaust all the maximising subspaces for the bound of A and consists 
only of a subclass of the larger class of all the maximising subspaces. Our theorem gives 
us the precise information to construct the larger class of all maximising subspaces 
(Manoukian 1978). This theorem shows also that the smaller class just discussed above, 
to which the space S' given above belongs, is not empty and is indeed a subclass of the 
larger class. This latter analysis is necessary for the determination of the logarithmic 
behaviour of A as well. Accordingly, a study of the asymptotic behaviour of A without 
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actually carrying out the subtractions of renormalisation is necessarily incomplete. 
Such an analysis is given in detail in Manoukian (1978) and gives both the polynomial 
(as discussed briefly above) and the logarithmic behaviour when all or, more generally, 
some of the external momentum components of the graph in question become large in 
Euclidean space non-exceptionally. 
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